Graphs with parallel mean curvature

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Helicoidal graphs with prescribed mean curvature

We prove an existence result for helicoidal graphs with prescribed mean curvature in a large class of warped product spaces which comprises space forms.

متن کامل

Conformal Killing graphs with prescribed mean curvature

We prove the existence and uniqueness of graphs with prescribed mean curvature function in a large class of Riemannian manifolds which comprises spaces endowed with a conformal Killing vector field.

متن کامل

Bernstein Theorems for Space-like Graphs with Parallel Mean Curvature and Controlled Growth

In this paper, we obtain an Ecker-Huisken type result for entire space-like graphs with parallel mean curvature.

متن کامل

Mean curvature flow of spacelike graphs

We prove the mean curvature flow of a spacelike graph in (Σ1 ×Σ2,g1 −g2) of a map f : Σ1 → Σ2 from a closed Riemannian manifold (Σ1,g1) with Ricci1 > 0 to a complete Riemannian manifold (Σ2,g2) with bounded curvature tensor and derivatives, and with K2 ≤ K1, remains a spacelike graph, exists for all time, and converges to a slice at infinity. We also show, with no need of the assumption K2 ≤ K1...

متن کامل

A note on radial graphs with constant mean curvature

Let be a smooth domain on the unit sphere S whose closure is contained in an open hemisphere and denote by H the mean curvature of ∂ as a submanifold of with respect to the inward unit normal. It is proved that for each real number H that satisfies inf H > −H ≥ 0, there exists a unique radial graph on bounded by ∂ with constant mean curvature H . The orientation on the graph is based on the nor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1989

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-1989-0965247-x